- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Narasimhamurthy, Monal (3)
-
Sankaranarayanan, Sriram (3)
-
Berger, Guillaume (1)
-
Berger, Guillaume O. (1)
-
Lahijanian, Morteza (1)
-
Watanabe, Kandai (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
Agarwal, A (1)
-
Belgrave, D (1)
-
Cho, K (1)
-
Koyejo, S (1)
-
Mohamed, S (1)
-
Oh, A. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Berger, Guillaume O.; Narasimhamurthy, Monal; Watanabe, Kandai; Lahijanian, Morteza; Sankaranarayanan, Sriram (, Neural Information Processing Systems (NeurIPS’22))Koyejo, S; Mohamed, S; Agarwal, A; Belgrave, D; Cho, K; Oh, A. (Ed.)
-
Narasimhamurthy, Monal; Sankaranarayanan, Sriram (, 25th ACM International Conference on Hybrid Systems: Computation and Control)In this paper, we study the “decoding” problem for discrete-time, stochastic hybrid systems with linear dynamics in each mode. Given an output trace of the system, the decoding problem seeks to construct a sequence of modes and states that yield a trace “as close as possible” to the original output trace. The decoding problem generalizes the state estimation problem, and is applicable to hybrid systems with non-determinism. The decoding problem is NP-complete, and can be reduced to solving a mixed-integer linear program (MILP). In this paper, we decompose the decoding problem into two parts: (a) finding a sequence of discrete modes and transitions; and (b) finding corresponding continuous states for the mode/transition sequence. In particular, once a sequence of modes/transitions is fixed, the problem of “filling in” the continuous states is performed by a linear programming problem. In order to support the decomposition, we “cover” the set of all possible mode/transition sequences by a finite subset. We use well-known probabilistic arguments to justify a choice of cover with high confidence and design randomized algorithms for finding such covers. Our approach is demonstrated on a series of benchmarks, wherein we observe that relatively tiny fraction of the possible mode/transition sequences can be used as a cover. Furthermore, we show that the resulting linear programs can be solved rapidly by exploiting the tree structure of the set cover.more » « less
An official website of the United States government

Full Text Available